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Generating strange nonchaotic trajectories

T. Kapitaniak
Division of Control and Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland
(Received 15 June 1992; revised manuscript received 28 September 1992)

We show a simple procedure which allows us to generate a strange nonchaotic trajectory. It can ex-

plain properties of strange nonchaotic attractors.

PACS number(s): 05.45.+b

Recently there has been much interest in the dynami-
cal properties of quasiperiodic forced systems. Forcing at
(at least) two irrationally related frequencies is common
in naturally occurring dynamical systems, physical or
biological, where a multipeaked spectrum of forcing is to
be expected. The dynamics of these systems can differ
substantially from that of their single-frequency-driven
counterparts. In addition to the well-known dynamical
behaviors that result, two-frequency, three-frequency
quasiperiodic, and chaotic attractors it is possible to ob-
serve another type of behavior leading to strange non-
chaotic attractors [1-10]. Strange nonchaotic attractors
(SNA’s) are characterized by fractal structure but typical
nearby trajectories on it do not diverge exponentially
with time. It has been shown that SNA’s are typical for
quasiperiodically forced systems. They have been found
not only in a number of numerical experiments [1-7], but
in experimental systems as well [§—10]. Until now there
have been no simple models that can explain the behavior
of trajectories on strange nonchaotic attractors.

Generally, SNA’s can occur in the four-dimensional
phase space of dissipative systems. In this Brief Report
we show a controlling technique that allows us to gen-
erate a strange nonchaotic trajectory by making small
changes in the parameters of the three-dimensional sys-
tem. Our method is applicable to the systems in which
behavior depends on a control parameter ¢ such that they
have a chaotic attractor for one value of ¢, say, ¢, and a
strange repeller together with a periodic attractor for the
other value of ¢, ¢,. Systems with a strange repeller ex-
hibit transient chaos [11,12]. Trajectories started from
randomly chosen initial points then approach the attrac-
tor with probability 1. Before reaching it, however, they
might come close to the strange repeller and stay in its vi-
cinity for shorter or longer periods of time. Long-lived
chaotic transients are often present around crisis
configurations [11], at parameter values just beyond the
disappearance of the chaotic attractor. It is worth men-
tioning that systems with fractal basin boundaries [13]
are also accompanied by transient chaos since such boun-
daries are, in general, the stable manifolds of a chaotic re-
peller. Computation of transient Lyapunov exponents for
the systems with chaotic repellers often shows that their
values become nonpositive long before the transient dies,
i.e., before the trajectory reaches the attractor [14,15].
(Transient Lyapunov exponent is not a common term, as
the classical definition as a limit for — o cannot be gen-
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eralized to define a time-dependent quantity. By tran-
sient Lyapunov exponent, we mean a value obtained for a
finite ¢ not large enough to ensure a satisfactory reduction
of the fluctuations but small enough to reveal slow trends.
The same definition can be found in [14].)

The main idea of our method is described in Fig. 1.
Let us consider two trajectories that start from nearby in-
itial conditions A’ and A4’’, which lie on or close to a
strange chaotic attractor. For f, <t <t?; these trajec-
tories represent the evolution of the system for a value of
control parameter ¢ =c;, and for ¢; <t <t; the evolution
is shown for control parameter ¢ =c,. In the first time
interval we observe exponential divergence of trajectories
described by the positive Lyapunov exponent A(z)>0. At
time ¢t =t¢, we are changing a value of the control param-
eter from ¢, to ¢,. For a new value of the control param-
eter our system has a strange repeller and we observe first
a further divergence of trajectories and a positive tran-
sient Lyapunov exponent A(¢)>0 for ¢, <t <¢,. At time
t, a transient Lyapunov exponent changes sign from posi-
tive to negative and for ¢, <t <t; we observe a conver-
gence of trajectories. At time ¢; we are changing a value
of the control parameter to ¢, again, etc. If #; is chosen
such that the period of time ¢;-¢, is not sufficient for a
system to reach periodic attractor and
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then we do not observe divergence of trajectories in time.
As a part of the trajectory evolves on the strange chaotic
attractor the switches between ¢, and ¢, will take place
in different points of phase space so the trajectory is
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FIG. 1. Behavior of nearby trajectories.
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aperiodic (not t; periodic) and has properties typical of
trajectories on strange nonchaotic attractors.
As an example of our method let us consider

X 4ax —[1+c cos(wt)]x +bx3=0, ()

where a, b, ¢, and w are constant. The examples of this
equation are found in many applications of mechanics,
particularly in problems of dynamical stability of elastic
systems [16,17]. In this Brief Report we took a =0.1,
b =1, =1, and c as a control parameter.

Equation (2) has three Lyapunov exponents: one of
them is always zero, one is always negative, and the third
one can change its sign with the change of the control pa-
rameter ¢. The value of this Lyapunov exponent is re-
sponsible for exponential divergence or convergence of
nearby trajectories and in the rest of this Brief Report we
shall investigate only the value of this Lyapunov ex-
ponent A. If A is negative we have the limit-cycle attrac-
tor, if A is positive we have a strange chaotic attractor,
and if A=0 a torus is an attractor.

The behavior of Eq. (2) has been investigated numeri-
cally in [15], where Eq. (2) has been integrated by the
fourth-order Runge-Kutta method with the integration
step being T, /200, where T, =27 /w and Lyapunov ex-
ponents have been obtained using the method of Wolf
et al [18]. The plot of A vs control parameter ¢ is shown
in Fig. 2 as ¢ changes from O to 0.5. If ¢ is small, A is neg-
ative, so Eq. (2) does not show sensitive dependence on
the initial conditions. When c is increasing up to about
0.348, A changes suddenly from negative to positive
values and the behavior of Eq. (2) is chaotic. In the inter-
val ¢ €(0.256,0.348) we observe long transient aperiodic
trajectories without sensitive dependence on the initial
condition, i.e., the transient Lyapunov exponent A(¢) de-
creases and turns negative far before transients have died.
The lifetime of the observed transient is relatively long
[(10°-10'°)T,] in comparison to the lifetime of transient
chaos (when the transient Lyapunov exponent is positive)
which is much shorter (about 103T,).

In our control procedure we took one value of ¢ for
which the behavior of the system is chaotic and one value
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FIG. 2. Lyapunov exponent A for Eq. (2) vs control parame-
ter c.
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FIG. 3. Transient Lyapunov exponent A(?) for Eq. (3) vs time.

of ¢ for which Eq. (2) has the above-mentioned transient
behavior. In numerical investigations ¢;=0.35 and
¢,=0.34, t;=10°T, and t;=3X10°T, have been taken
and we consider the behavior of a system:

X +ax[1+c(t)cos(wt)]x +bx3=0, (3)

where c(t)=c, for ty <t <t, and c(t)=c; for t| <t <t;.
Generally, T and T, =t, are incommensurate so Eq. (3)
has four-dimensional phase space (x,x,wt,(27/t;)t) and
can have a strange nonchaotic attractor. In Fig. 3 we
show the plot of transient Lyapunov exponent A(?) vs t.
Since the function ¢ (?) is discontinuous, in numerical cal-
culations we took its Fourier-series approximation with
100 components. In this figure the regions of divergence
and convergence of nearby trajectories are visible. As the
value of the Lyapunov exponent averaged over time T, is
negative and close to —0.001 we do not observe exponen-
tial divergence of trajectories in time. This result shows
that applying our control procedure we manage to build
an aperiodic trajectory which is predictable in the sense
that nearby trajectories do not diverge exponentially as it
is shown in Fig. 4. Figure 4 presents the distance
A—|x'(t +nT,)—x"(t +nT,)|; where n =1,2,...,x' is
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FIG. 4. Distance between nearby trajectories of Eq. (3) vs
time.
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a trajectory for initial conditions x (0)=.01, x(0)=0, and
x'" is a trajectory for x (0)=0.101, x(0)=0.

Our procedure allows us to build the simplest model of
a strange nonchaotic attractor and explain the behavior
of trajectories on it. Periods of time when we observe
divergence of nearby trajectories (positive maximum
Lyapunov exponent) and periods of time when trajec-
tories converge (negative Lyapunov exponents) as in our
construction seem to be necessary for all trajectories on
strange nonchaotic attractors. However, in most of the
SNA'’s these periods do not have to be so well defined as
in our model.

The method presented here can be applied only to the
systems which display a specific a priori known behavior.
This requires the knowledge of equations of motion and
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practically eliminates our method as a method of control-
ling chaos in the sense of the Ott-Grebogi-Yorke method
[19-26]. However, as an effect of applying this method it
is possible to obtain an aperiodic trajectory which is
different from the original chaotic trajectory in that it
can be predictable. The method of generating a strange
nonchaotic trajectory described here can be applied for
designing an aperiodic orbit which can be used as an in-
put to the systems where an aperiodic but predictable tra-
jectory is advantageous. In mechanical systems, gear
boxes are the classical examples of such a system
(aperiodic forcing reduces fatigue of materials).

This work has been supported by KBN (Poland) under
Project No. 333579102.
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